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The existence is shown o f  five different forms of the appearance of superposed 
fluctuations on flow characteristics on the basis of an analysis of the mecha- 
nism of turbulence propagation in fluctuating flows. 

INTRODUCTION 

A sufficiently large quantity of papers [i-30] is already devoted to the study of 
fluctuating turbulent flows (FTF); however, despite the efforts undertaken, the single- 
valued comprehension of many aspects of this interesting hydrodynamic phenomenon has still 
not been achieved. The first attempt at FTF classification is due to Carr [31], who pro- 
posed separating the FTF according to the nature and degree of appearance of dynamic effects 
into three qualitatively different categories on the basis of an analysis of the materials 
[8, i0, ii, 16, 17, 24, 32, 33]: flows in which the discharge fluctuations exert no influ- 
ence, in practice, on the velocity distribution <u>; flows in which this influence is mani- 
fested locally in the near-wall layers; and flows in which it is propagated over the whole 
transverse section of the channel. Carr proposed as parameters characterizing the degree 
of appearance of the effect the relative amplitude ~ of the velocity fluctuations and the 
ratio f/fe between the frequency of the superposed fluctuations f and the characteristic 
"explosion frequency" fe" For the stationary case the "explosion frequency" is found ex- 
perimentally in [34] in the form 

[~e -- 110 
5~ ' (i) 

where 6 and u 0 are mean values, in time, of the fluctuating turbulent boundary layer thick- 
ness and the velocity on its outer boundary. 

It is proposed to classify the FTF according to the Strouhal number St 6 = f6/u 0 and B 
in [31]. However, both these approaches do not disclose the physical mechanism of the in- 
fluence of the superposed fluctuations on the flow microstructure and do not afford a pos- 
sibility of setting up a clear boundary between the second and third FTF categories. 

A clearer FTF classification is proposed in [23] on the basis of the principle of 
turbulence propagation. The so-called "turbulent Stokes number" (~/2VT)II2D/2 is intro- 
duced to estimate the velocity of turbulent kinetic energy (TKE) propagation and the extent 
of the TKE propagation zone y is formulated as a function of the turbulent viscosity v T and 
the time t: 

v = V E $ .  (2) 
Assuming the turbulent viscosity in the outer boundary layer domain [35] constant and 

equal to 

'~T = 0,007 Ru , ,  ( 3 ) 

the authors of [231 obtained a condition for turbulence propagation along the channel axis 
per period of discharge fluctuation 

~D 
_ ~ 0,88. (4) 
U. 

According to this classification, all the known FTF as a function of values of the 
complexes ~D/~, and Re m and the nature of the appearance of nonstationary effects are sep- 
arated into five groups, "quasistationary", "low-frequency", "medium-frequency", "high- 
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frequency", and "rapidly oscillating" flows. Included in the first group are FTF character- 
ized by no influence of nonstationarity on both the average and the fluctuation character- 
istics. Flows for which the influence of nonstationarity on just the distribution of <u> 
over the channel radius is characteristic are in the second group. The FTF characterized 
by noticeable interaction between the turbulent structure and the superposed oscillations, 
significant deformations of the turbulent velocity fluctuations profiles but quite a slight 
distinction between the distributions of the time-averaged velocities and the quasistation- 
ary analogs over the whole tube section fall into the third group. Flow for which a strong 
interaction between the turbulence and the stream oscillations is characteristic falls into 
the group of so-called "high-frequency" FTF. The influence of flow fluctuations on their 
turbulent structure is concentrated in a relatively narrow near-wall layer y/R ~ 0.i, while 
the turbulence outside this layer is "frozen" (oscillations occur according to the laws of 
a solid body). Inflection points can appear in profiles of the velocity ~ in flows of this 
group because of deformation of the kinetic structure. Among the "rapidly oscillating" are 
FTF in which turbulent structure interaction with the superposed oscillations in the near- 
wall layers appears most strongly while the transverse dimension of the domain of "frozen" 
turbulence exceeds by several times the dimensions of analogous FTF domains of the previous 
group. 

The FTF classification made in [23] is an absolutely significant contribution to the 
comprehension of their nature. However, utilization of the complexes mD/~, andre m as cri- 
teria for the referral of real FTF to some classification group is not completely legitimate 
since the approach does not here take account of one quite important circumstance, the in- 
fluence of the amplitude of the superposed fluctuations on the average and fluctuating 
(turbulent) flow characteristics. For this reason the predictions of the authors of [23] 
relative to the boundaries of the domains of existence of the FTF groups listed are prob- 
ably not in agreement with existing experimental data. 

I. MECHANISM OF TURBULENCE PROPAGATION IN FTF 

It is known that the main fraction of the TKE in stationary turbulent boundary layers 
(TBL) is generated in the near-wall domains (y+ = y~,/v = 10-12), where the generation is 
related to renewal of the viscous sublayer [34-36], is explosive in nature, and is repeated 
at a definite frequency on the average. According to the data in [34], the mean frequency 
of viscous sublayer renewal and of turbulence "explosions" accompanied by ejections of turb- 
ulent formations from the domain of TKE generation is determined by the dependence (I). The 
turbulent formations that are carriers of a definite quantity of TKE are propagated over 
the whole stream thickness at certain finite velocities because of diffusion and convection. 
To determine their propagation rates Vp for stationary flow regimes, information would be 
required about the evolutions of instantaneous states of the whole flow field; however, it 
is a quite complex matter and not realizable in practice to obtain such information at this 
time. 

In the case of nonstationary periodic (in particular, fluctuating) turbulent flows, 
the question of determining Vp is simplified noticeably and can be solved by using modern 
diagnostic apparatus with an automated statistical signal processing method. 

It is necessary to have the velocity field <u> and the turbulent tangential stresses 
<u'v'> averaged over the ensemble of realization in different phases of discharge fluctua- 
tions of the working medium as the initial data to determine the quantity of TKE being gen- 
erated 

d <u> 
P =  <u'v'> 

dr 

in  a f l u c t u a t i n g  t u r b u l e n t  f low.  

The changes in  t h e  q u a n t i t y  R P / ~  over  t h e  p e r i o d  and over  t h e  t h i c k n e s s  of  t h e  f l u c -  
t u a t i n g  boundary layer can be assessed from the constant level lines of the TKE generation 
density represented in Fig. i. These data are obtained on an installation [7] by using a 
two-channel thermoanemometer of constant temperature and an automated measuring-calculating 
complex [37]. The measurements were executed in a D = 50 mm diameter cylindrical channel 
in a section with the coordinate x = 45D corresponding to developed fluctuating turbulent 
flow. The stream fluctuations were realized in a sinusoid with frequency f = 1/T = 3__Hz 
and Bum = 50% relative amplitude. The mean-discharge Reynolds number determined as Re m = 
~mD/v was 25,500.  
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Fig. i. Change in density of TKE generation over a period 
of discharge fluctuation and over the tube radius, i) 
RP/~ i = 200; 2) 175; 3) 150; 4) 125; 5) i00; 6) 75; 7) 50; 
8) 40; 9) 30; i0) 20; Ii) i0; 12) 5; 13) 2.5. 

The deduction can be made from Fig. 1 that the maximal density of turbulent energy and 
turbulence "explosion" generation accompanied by ejections of the most energy-containing 
formations in the flow during fluctuating medium motion would occur in the maximum discharge 
phase in the near-wall flow layers where the maximal values of the turbulent tangential 
stresses <u'v'> would be combined with the maximal velocity gradient 8<u>/Sr. The level of 
TKE generation in this phase (at the identical coordinate y) would exceed by several tens 
of times the value P in the phase of the discharge velocity minimum. 

The TKE being generated in the near-wall domain of a fluctuating flow (in the domain 
of the viscous sublayer outer boundary) in the above-mentioned phase of <Um> change is 
propagated over the flow core and the viscous sublayer at a certain finite velocity. This 
latter circumstance is the reason that the fluctuations in the turbulent kinetic energy val- 
ues lag in phase behind the fluctuations of the mean-discharge velocity <Um>, where this 
lag increases monotonically in the direction of the channel axis [2, i0, 12, 23, 25-26, 28- 
30] .  

If the turbulence propagation velocity is understood to be the displacement velocity 
of the most energy-containing formations from their generation zone, then its magnitude can 
be determined by using the data in [18]. The time At of turbulence propagation over the 
whose turbulent boundary layer section was determined in this paper on the basis of measur- 
ing the auto-correlation functions. According to the data in [18], the time of turbulence 
propagation At0 from the zone of TKE generation to the tube axis would agree with the mean 
value of the period T e of the explosion of turbulence. The experimental results presented 
in [18] are generalized satisfactorily by a dependence of the form 

where 

lg At+ : lg g+ -[- lg 2, (5) 

~ = A t u ~  (6)  

Substituting (6) into (5), we obtain the expression 

At-- ~Y , 

which is easily converted into the form 

Ate, :L 
D R "  

The v e l o c i t y  o f  t u r b u l e n c e  p r o p a g a t i o n  i s  found  from (7)  and i s  w r i t t e n  as  

(7) 

(8) 

1361 



_y 
R 
1 • 2 1 5  , 

4e ~ /  , 

0 0 0--~ 

�9 ~ev s -  2 
~o A- 3 

~ jo2~ , o- S 
@-- 6 

�9 X-8 
x~ T e-9 

~ I ~  Xl " I  I I ' A 

2 
Fig. 2. Lag in the time of turbulent energy propagation in 
fluctuating flows: i) data in [2] for Re m = 32,000, Bu m = 
50%, f = 1 Hz_; 2) [2] for Rem =132,000, Bu m=50%, f= 10Hz; 
3) [30] for Rem = 50,000, f = 0.5 Hz; 4) [30], Rem = 50,000, 
f = 3.6 Hz; 5) [28] for R-em = 3900, f = 0.625 Hz; 6) [28] 
for Re--m = 5800, f = 0.625 Hz; 7) data of authors for ~m = 
25,000, f = 3 Hz, Bum = 50%; 8) data of authors for R-em = 
25,500, f = 3 Hz, Bum = 13.5%. 

u,  (9) ~p ~--~- ~ 

where ~, is the average value of the dynamic velocity over time. It follows from (9) that 
the velocity Vp is determined uniquely by the value of ~, and depends on neither the time 
nor the space coordinates. 

This deduction is verified by comparing the dependence (8) shown by a straight line in 
Fig. 2 with the results of processing experimental material of the authors of this paper 
and data obtained by other researchers. The radial distributions of the phase angles of 
fluctuations of the TKE magnitudes <k> and the intensities of the longitudinal component 
intensities of the turbulent velocity fluctuations <u'2> obtained for different values of 
BUm, Rem presented in [2, 28, 30] were initial information to determine the values At~,/D 
superposed in Fig. 2. The data 9 are obtained as a result of processing experimental re- 
suits [7] on propagation of peak values of the excess coefficients. The spread of points 
from the dependence (8) in Fig. 2 does not exceed the error in determining the quantities 
used for their construction. It hence follows that the normalized velocity of turbulence 
propagation Vp/~.~ in FTF is neither dependent on the frequency f nor the amplitude Bum, nor 
the Reynolds number ~e m. Correspondingly, the velocity Vp depends only on the dynamic 
velocity u,. 

The dependence (8) was later used to forecast possible modifications of turbulence 
propagation in fluctuating flows (Fig. 3). To do this it was first reduced to the form 

V _ u ,T  At (10) 
R D T 

The condition at which TKE batches generated in the near-wall domain reach the tube 
axis can be represented by the equality 

At0_ D _ [D (11) 
T u ,T  u,  

Line 1 in Fig. 3 corresponds to that fluctuating flow mode for which the TKE from the 
generation zone succeeds in being propagated over the whole flow thickness (to the tube 
axis) in the time At 0 << T. Here fD/~... + 0, the phase shifts between the fluctuations of 
the velocity <u> (line a) and the quantities <k> (line b) are missing in practice and the 
flow characteristics correspond to quasistationary analogs. 
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Fig. 3. Modifications of the turbulence 
propagation in f!uctuating flows: a) 
<Um>/~m; b) <k>/k. 

As the value of the combination fD/~, increases, the lag in turbulence propagation 
over the flow thickness becomes more and more noticeable (line 2 in Fig. 3). The flow 
characteristics (especially the fluctuating ones) start to deviate from the quasistationary 
values while the condition At 0 < T is still conserved. 

For fD/~, = i (line 3) the time of turbulence propagation in the whole flow thickness 
agrees with the period of working medium discharge fluctuation. Starting with this time, 
a "frozen" turbulence zone (line 4) appears in the FTF, which is characterized by invari- 
ance of the TKE in time. For such a flow mode, turbulence does not succeed in being propa- 
gated from the maximal generation zone in the whole flow thickness during the time T and, 
starting with a certain coordinate, its superposition on the turbulence generated in the 
previous period of velocity fluctuation occurs. 

The distance yp between the tube wall and the "frozen" turbulence zone can be calcu- 
lated from the relationship (I0) for At = T: 

y__~p= u,T 1 
R ----5-= fDi;, , (12) 

where fD/~, ~ i. 

The dependence (12) is shown by a line in Fig. 4. Data over the "frozen" turbulence 
layer thicknesses obtained by processing the experimental results in [2, 12, 16, 18, 25, 
30] and the authors' data (see Tables 1 and 2 for the notation of the points) are repre- 
sented here by points. Data referring to the FTF on a flat plate are also represented in 
Fig. 4. Twice the average thickness of the fluctuating turbulent boundary layer 26 is 
used as the characteristic linear dimension instead of D during processing of the data re- 
ferring to flows on flat plates. 

The domain a in Fig. 4 corresponds to cases when At 0 S T while the domain b is when 
At o > T. Two subdomains IV and V are provisionally separated out in domain b. Subdomain 
IV is bounded by the dimensionless frequencies 1 ~ fD/~, < i0 while the "frozen" turbulence 
zone is extended in the space from 1 ~ yp/R > 0.I. For the subdomain V (i0 ~ fD/~,~ < i00) 
the "frozen" turbulence is localized in the zone from 0.I ~ yp/R > 0.01. " 

Comparing the dependence (4) presented in [23] and the dependence fD/~, = 1 obtained 
by the authors, that characterize the condition of turbulence propagation along the tube 
axis during one velocity fluctuation period <Um> , displays their substantial divergence. 
Earlier "frozen" turbulence is predicted by the dependence (4), which is not confirmed by 
the data presented in Fig. 4. 
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Fig. 4. Influence of the dimensionless frequency on the 
thickness of the turbulence propagation layer: open sym- 
bols without bars - regime i; dark symbols without bars - 

regime 2; open symbols with upper bar - regime 3; dark 
symbols with horizontal bar regime 4; light symbols with 
bar below- regime 5. 

TABLE i. Information about Experimental Investigations of 
Fluctuating Turbulent Flows in a Tube 

Source" R-'e m [, HZ fO/-u, flu m 

50000 [30] 

[241 
[121 

[18] 

I171 

[281 

I1, 21 

[15] 

Authors ' I 
data 

2100 
41800 
20100 
28400 
28800 
10000 

10000 

4000 

3900 
5800 

. 7500 
32000 

64000 
36000 

35100 
58700 
84500 
70300 
36500 
25500 

0,5 
3,6 
1,75 
1 
1 
1 
0,5 
0,62 
0,197 
0,126 
0,757 
0,208 
0,416 
0 , 7 7  
1,282 
0,625 
0,625 
0,625 
1 

10 
10 
l0 
2,08 

1,02 
2,08 
2,08 
2,08 
0,299 
3 

0,49 
3,53 
2,08 
0,804 
1,27 
1,17 
0,586 
2,45 
0,78 
0,075 
0,45 
0,05 
0,10 
0,185 
0,309 
0,154 
0,109 
0,087 
0,230 
2,39 
2,43 
1,28 
0,179 

0,09 
0,117 
0,085 
0,099 
0,025 
0,338 
0,34 

0,64 
0,15 
0,35 
O, 073 
O, 197 
O, 146 
0,088 
0,42 
0,50 
0,53 
0,75 
0,07 
O, 24 
0,20 
O, 12 
0,10 
0,10 
0,10 
0,50 
0,50 
0,20 
0,50 
O, 522 
0,802 
0,257 
0,248 
0,533 
0,266 
0,334 
0,262 
0,50 
0,135 

Notation in 
Mode iFigs. 4 and 5 

1 

2 
3 

4 

4 

5 

2 
1 
l 
3 6 
4 
4 

7 

1 

2. CLASSIFICATION OF FLUCTUATING TURBULENT FLOWS 

It was mentioned above that effects associated with the influence of the relative am- 
plitude of the discharge fluctuation were not taken into account in the classification of 
turbulent flow according to the parameters ~D/~, and Re m presented in [23]. Accordin~ to 
this classification, in FTF characterized by identical values of combinations eD/u, and Rem,~ 
independently of Bum nonstationary effects should appear identical. However, practice has 
shown that this is not so. In particular, the authors of this paper saw this in an experi- 
mental investigation of developed turbulent air flows in a cylindrical tube, fluctuating at 
a f = 3 Hz frequency for Re m = 25,500 for two different values of the discharge fluctuation 
amplitude Bum = 13.5 and 50%. According to the classification in [23], both these regimes 
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TABLE 2. Information about Experimental Investigations of 
Fluctuating Turbulent Boundary Layers on a Flat Plate or in 
a Plane Channel 

I 

Source 

[5] 0i05 

0,05 
0,0623 

0,4 
0', 076 

f' Hz 

0,25 
0,5 
2 

0,3t4 
22 
24 
26 
29 
2 
0,33 

0,66 

1,33 

2 

7,65 

48 

[13] 
[29] 

U ,  

i ,~ 
2 
8 
0,33 
7,83 
8,54 
9,25 

10,3 
4,2 
0,261 

0,448 

0,678 

0,902 

1,36 

2,71 

5,19 

32,6 

[25] 
[161 

~<uo> Mode 

0,05 3 
0,05 4 
0,05 4 
1 , 0  3 
O,O55 5 
0,055 5 
O, 055 5 
O, 055 5 
0,40 4 
0,292 2 
0,202 2 
O, 147 2 
0,34 3 
0,149. 2 
0,112 2 
0,352 3 
O, 195 3 
O, 107 3 
O, 344 3 
0,215 3 
0,13 3 
O, 286 4 
O, 176 4 
0,081 3 
0,264 4 
O, 136 4 
O, 062 3 
O, 297 4 
O, 127 4 
0,073 4 
0,34 5 

Notation in 
Figs. 4 and 5 

10 
11 

12 
la 

should be in the "medium frequency" group. However, if the superposed fluctuations on the 
profile of the velocity <u> were missing in practice in a flow with Bum = 13.5% and defor- 
mation of just the profiles of the turbulent fluctuation intensities <u'2> averaged with re- 
spect to the phase were observed, then for Bum = 50% substantial influence of nonstationary 
effects would be observed on the distributions of the quantities <u'2> and <u>. Observa- 
tions [15, 28] indicated that the fluctuation characteristics <u'2>, <v'2>, <u'v'>vary 
primarily under the influence of the superposed fluctuations and then as the dimensionless 
frequency fD/~, or the amplitude Bum grows, noticeable deformations of the profiles of the 
velocities <u> and u m appear. 

The main characteristics of flows investigated in [2, 5, 12, 13, 15-18, 24, 25, 28-30] 
are represented in Tables 1 and 2. Analysis of the cited material permitted the authors of 
this paper to extract five different forms of the appearance of nonstationary effects in 
fluctuating flows, similarly to [23], and to classify the flows according to this criterion 
by division into separate groups. 

As in [23], FTF in which the connections between the characteristics are subject to 
"quasistationary" regularities are included in the first group. The influence of the pre- 
history does not appear in flows of this kind while changes in the quantities <u>, <u'2>, 
and <Um> occur practically cophasally. 

The FTF in which nonstationary effects influence the TKE distribution over the bound- 
ary layer without noticeably deforming the field of the velocities <Um> averaged over the 
ensemble are included in the second group of the proposed classification. 

The principal feature of the FTF included in the third group is that the influence of 
nonstationary effects therein appears over the whole boundary layer thickness and is ex- 
tended to both the TKE distribution and to the profile of <u>. Profiles of the velocity 
in the FTF of this group are deformed principally near the streamlined surface. As the 
dimensionless frequency fD/~, or the relative amplitude Bum of the flow fluctuations in- 
creases, the influence of the nonstationary effects grows. 

The fourth FTF group is characterized by the still more substantial influence of the 
flow fluctuations on the flow configuration and the localization of this influence in the 
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Fig. 5. Classification of nonstationary 
turbulent flows (notation the same as in 
Fig. 4). 

layer 0 < yp/R S ~,/(FD). Inflection points appear in the ~ profiles near the wall, and 
"frozen" turbulence in the domain yp > U,/(2f). 

The distinctive feature of the FTF of the fifth group of the proposed classification 
is that the influence of nonstationarity therein is concentrated in a quite thin near-wall 
layer 0 < y/R < 0.i. This type of flow has as yet been investigated least. 

In conformity with the FTF classification taken, the data from Tables 1 and 2 were 
superposed in Fig. 5. The symbols corresponding to the different FTF groups occupy defi- 
nite domains in the plane fD/~,, ~. The boundaries between domains III, IV and IV, V are found 
from the condition for the existence of a "frozen" turbulence layer and are represented, 
respectively, in the form fD/~, = 1 and fD/~, = i0. 

Determination of the boundary between domains II and III was the most complex problem. 
The fact set up experimentally [7] that the characteristic feature of fluctuating flows of 
the third group and the principal reason for the anomalies observed here in the distribu- 
tions of the velocity <u> are the quite definite delay in the reaction of the turbulent flow 
configuration to a change in the velocity <Um>, the so-called hysteresis of turbulence, was 
used in solving this problem. This phenomenon occurs because of the significant magnifica- 
tion of nonstationary convection mechanism and the introduction of turbulent kinetic energy 
by this mechanism from the phases of flow retardation, where it is generated intensively and 
does not succeed completely in dissipation, to the phase, of the minimum and the increase of 
the discharge. 

Analysis of the TKE balance shows that the state of local equilibrium of turbulence 
can be disturbed when the nonstationary convection of turbulent kinetic energy becomes com- 
mensurate with the other terms of the balance equation, in particular, the dissipative 
term. This condition can be represented as follows 

0 <kq> 
O! -~ < % > ' (13) 

where <kq> is the quasistationary TKE value and <eq> is the TKE dissipation. 

Let us reduce the left and right sides of (13) to dimensionless form by multiplying 
them by R/<u,>S; 

e -  ~ a < k q >  ~., R 
< U , >  3 Ot ~ < U , >  8 < e q > .  (14) 

According to the data in [35, 38], 
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R .<~q> _~2 (15) <u,>~ 

on the tube axis for a stationary turbulent flow regime while according to the data in [35], 

for r = 0 

< kq) ]/2/ < Um) --~0,05. (16) 

Substitution of (16) into (14) and replacement of <u,> by the hydraulic drag coeffic- 
ient by using the relationship 

' { u , >  = <urn> - V ' < ~ ) / 8  (17) 

for a turbulent flow fluctuating according to the law <Um(~t)> = ~m(l + Bum cos ~t) yields 

�9 

Let us determine the angle ~t, for which the function (18) takes on the maximal value 

(Or)max =~C COS ( I - -  ~ h  (19) 
2~ ] "  

Substituting (19) into (18) and taking (15) and (14) into account, we obtain 

fD (1 + ~ cos (or)lax) 2 ( ( ~ }/8) 3/2 

~* = sin(ot)maxO,O05~ ~ " V ~  (20) 

The q u a n t i t y  <~> in (20) i s  c a l c u l a t e d  from (17) f o r  t h e  phase (~t)ma x. The r i g h t  
s i d e  of  (20) depends on ly  on Re m and ~. 

A computat ion us ing  (20) f o r  ~ = 50,000 and 25,000 i s  r e p r e s e n t e d  by l i n e s  1 and 2, 
respectively, in Fig. 5. The insignificant stratificatio__n of the lines I and 2 indicates 
that the value of the complex fD/~, depends weakly on Re m. The behavior of curves 1 and 2 
in Fig. 5 indicates a tendency to broadening of the zone of regime 3 existence as the flow 
fluctuation amplitudes increase. 

NOTATION 

x, r are cylindrical coordinates; y is the coordinate measured from the wall; u, v 
are velocity components along the x, r axes; t is the time; R is the tube radius; D is 
the diameter; 6 is the boundary layer thickness; f is the frequency ; m is the cyclic 
frequency; T is the period; u, is the dynamic velocity; u 0 is the velocity on the tube 
axis or in the external flow; v is the kinematic viscosity; ~T is the turbulent viscosity; 
R e is the Reynolds number; um is the mean mass flow rate; Vp is the velocity of turbu- 
lence propagation; <u'2>, <v'2>, <w'2> are values of the turbulent velocity component fluc- 
tuations averaged over the ensemble; <k> = (<u'2> + <v'2> + <~'z>)/2 is the turbulent kinetic 
energy; <u'v'> is the turbulent tangential stress; ~ is the fluctuation amplitude; yp is 
the thickness of the turbulence propagation layer; ~ is the dissipation rate; I is the 
hydraulic drag coefficient; P is the turbulent energy generation. Subscripts: 0 is for 
values on the tube axis; q is for the quasistationary value; m is for the mean discharge 
velocity; * is for the dynamic velocity; ( )' is for turbulent fluctuations. Symbols: 
< > is for averaging over the ensemble, upper bar is for averaging with respect to time. 
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